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Electromagnetic waves from any isolated source 

M A Rotenberg 
Division of Science, University of Wisconsin-Parkside, Kenosha, Wisconsin 53 140, USA 

Received 10 February 1975 

Abstract. A double-parameter approximation method is applied to the Einstein-Maxwell 
equations of general relativity for the study of electromagnetic waves from any isolated 
cohesive source. I t  is found that, in general, the source undergoes secular changes of mass 
and angular momentum at rates equal and opposite to those at which energy and angular 
momentum are carried away by the waves from the source, as calculated by the electro- 
magnetic energy tensor. 

1. Introduction 

In a previous paper it was shown that a finite oscillating coherent linear distribution of 
charge emitting electromagnetic waves undergoes a permanent reduction of mass, 
accounting for the flow of radiation energy from the source as calculated by means of 
the electromagnetic energy tensor (Rotenberg 1966). One aim of the present work is to 
extend this result to any isolated cohesive source of electromagnetic waves. The main 
object, however, is to establish that a generally permanent change in angular momentum 
of the source occurs which is equal and opposite to the angular momentum transmitted 
from the source by electromagnetic radiation. In obtaining expressions representing 
the rates of variation in mass and angular momentum of the source as outgoing radia- 
tion, we shall use a double-parameter approximation method described in $ 3, formally 
similar to that invented by Bonnor (1959) and appearing in the above-mentioned paper 
of Rotenberg (1966). As in the latter work, the approximation method will be applied to 
the metric tensor and then to the Einstein-Maxwell equations? 

Rik = - 8 ~ E i k  E: = - FiaFka + $5:FabFab 

;a = 0 Fik = 4 i , k - 4 k , i  
F i a  

for free space (Eddington 1924, # 7 3  and 7 7 ) ,  where 4i,  Fik and E i k  are the electromag- 
netic 4-potential, 4 x 4-field and energy tensors, respectively. To reduce calculations 
considerably, coordinates of the Sachs metric (introduced in $ 4) will be employed for 
carrying out this method. 

The exterior retarded multipole wave solution for 4i  of the linearized Einstein- 
Maxwell equations is given in $2  for outgoing electromagnetic waves from any isolated 
coherent source ; the solution is expressed in (pseudo-) Galilean coordinates referred to 
here as x i  = (x, y, z, t )  = (xa, t )  with their origin as 0. In 8 3,  the double-parameter 

t In this paper, Latin indices range from 1 to 4, Greek indices from 1 to 3 ;  the summation convention applies 
to both forms of indices. Comma subscripts indicate partial differentiation and semicolon subscripts denote 
covariant differentiation, with respect to the coordinate system used. 
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approximation method is outlined, and the metric invented by Sachs (1962) is presented 
in 9 4, where also the exterior multipole wave solution for +i  in the coordinates of this 
metric is derived from the one of§ 2 in Galilean coordinates. The multipole wave solution 
in the Sachs metric is required in 6 5 to calculate the components of the electromagnetic 
energy tensor in this metric and formulae for the rates at which energy and angular 
momentum of electromagnetic radiation are transmitted from the source. Finally, in 
6 6 the main results are obtained from the approximate Einstein-Maxwell equations : 
that there occur, in general, secular changes in mass and angular momentum of the 
source at rates equal and opposite to those at which energy and angular momentum 
are carried away from the source by radiation. The more lengthy calculations and 
some useful identities are relegated to the appendixes. 

2. The retarded solution of the linearized Einstein-Maxwell equations? 

For +i in Galilean coordinates xi = (x, y, z ,  t )  = (x,, t ) ,  we present here, after introducing 
relevant notation, the exterior retarded multipole wave solution of the linearized form 
of the second pair of equations (1.1) or of 

in which Ji is the 4-current density of the source of the field. See appendix 1 for a deriva- 
tion of this solution. 

Let m be the total mass and e the total charge of the source, so that 

m = T44 du e = Jv J4 dv 

V being any space volume sufficient to include the source; and let a be a constant, with 
the dimensions of length, characterizing the extent of the source by representing, for 
example, the radius of gyration of the source averaged over all time. Let 

Ii:upK,.(t) 2' 1 x O x p x K .  . . Ji(x,, t )  dv (du = dx, dx, dx,) (2.3) 
V 

be the moments at time t of the 4-current density Ji for the source about the coordinate 
planes x, = 0, so that these moments satisfy the conservation law 

(2.4) 
d e l  

qabJ,,, = 0 qik = qik = diag(- 1, - 1, - 1, + 1) 

for .Ii. Introduce the specijc moments, unaffected by any change in units of e or a, as 

t It will be assumed that, in the linear approximation to the Einstein-Maxwell equations, distance, time and 
mass retain their Newtonian significance. 
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and write 

(2.6) 
def def  de f  

k a  = h4:l ka, = h4:1, la ,  = h a : , .  

Finally, let r %' (x,x,)~'~ be the radial coordinate OP of the field point P having spherical 
polar coordinates (r ,  8, d), and write 

(2.7) 
def n, = x,Jr = (sin 0 cos 4, sin 0 sin 4, cos e). 

Then, for outgoing waves, the exterior multipole wave solution of the linear approxima- 
tion to equations (2.1) is (appendix 1) 

4, = e[ - ar - k& + aznu(r- '11, + r -  21,u) + O(a3)] 

44 = e{r - '+an, , ( r - 'k&+r-  2ka)+a2[  - r -  'n,n,lb, (2.8) 

-t-+(3nUn, - dUp) (  - 2 r p 2 l U p  + r -  3kup)] + o(a3)} 

where k , ,  k,,,  la ,  are to be evaluated at retarded time U Er r - r and a prime indicates 
differentiation with respect to the argument U. 

In the solution (2 .8)  the 2s pole wave (s  = 0, 1,2 , .  . .) is the part involving eas; only 
the monopole contribution and the dipole and quadrupole wave contributions have been 
explicitly written in this multipole wave solution, since these will be sufficient to deduce 
the results of Q 6 .  

3. The double-parameter approximation method 

The source of the combined gravitational and electromagnetic field is characterized by 
the three parameters m, e and a introduced in Q 2. So we shall assume that the metric 
tensor gik representing the external field can be expanded as a convergent triple-series 
in ascending powers of m, e and a : 

n = O  p = O  s = O  

!rips) where gik are independent of m, e or a. We now split up the right-hand side of equation 
(3.1) into suitable components, using the steps below. When this is achieved we shall 
find that we need confine attention only to a part involving a double power series in e 
and a, which is relevant to the present study of the electromagnetic waves from the source. 
We proceed to break up the expansion (3.1) in the following four stages : 
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so finally, 

1203 

n =  1 p =  I s = O  

The field depends essentially on the existence of the mass and charge of the source; 
if these are absent (ie, if m = 0, e = 0), the space-time will be flat and the constant a 
should, consequently, not appear on the right of equation (3.l)t. From this it follows 
that 

(s 2 1) (3.3) 

and the second, single summation, term on the right of equation (3.2) vanishes. The 
fourth, double summation, term on the right of equation (3.2) involves the parameters 
m and a and refers to the external gravitational field of the source, which is not our con- 
cern here. The last, triple summation, term on the right of equation (3.2) contains all 
the three parameters m, e and a and represents the interaction between the external 
gravitational and electromagnetic fields. Since both m and e are small in relativistic 
units, the leading effects of this interaction on the source are expected to be small com- 
pared with those of the purely gravitational or electromagnetic waves corresponding 
to the respective double summation terms on the right of equation (3.2). 

From the foregoing considerations, the only contribution to g i ,  in equation (3.2) 
that we need focus attention on is the purely electromagnetic contribution 

p = 2  s = o  

( 0 0 )  ( 0 0 0 )  
in which gik and E, independent of m, e or a, are condensed forms of g, and fr', 
respectively; the isolated term gik refers to flat space-time. 

The reason for starting the summation with respect to p in equation (3.4) from p = 2, 
rather than p = 1 as in the corresponding double summation term in equation (3.2), 
is as follows. Use of the expansion (3.4) for gik together with equations (2.8) and the 
fourth of equations (1.1) in the second of equations (1.1) will result in a similar expansion 
for E i k ,  namely 

( 0 0 )  

p = 2  s = o  

( P S )  

in which E ,  do not involve m, e or a. In this expansion (33, the summation with respect 
to p begins with p = 2, and it is readily seen that this would still be the case even if the 
range of summation in the expansion (3.4) for g i ,  were to be extended to include p = 1. 
So we may as well allow the summation with respect to p for gik  to commence with 
p = 2 as in the expansion (3.5) for E i k ,  since the metric depends in part on the electro- 
magnetic field represented by E i k .  

t Pure gravitational and electromagnetic waves, those which possess no sources, are excluded from our  
discussion. 
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The double-series expansions (3.4) and (3.9, first introduced by Rotenberg (1966), 
will now be the basis of the double-parameter approximation method, used for studying 
the effects of electromagnetic waves on the mass and angular momentum of their source. 
Inserting these expansions in the first of equations (1.1) and equating the coefficients 
of ePaS on both sides for each given pair p and s, we obtain ten second-order differential 
equations of the form 

( P S I  (PSI (qrJ ( P S )  

Qfm(gik) = Y’,,,,(g,)+constant x E,, (2 < 4 < p -  1,O < r < s) (3.6) 

to be referred to as the ( p s )  approximation. The left-hand sides, Q l m ,  are linear in 

$;: and their derivatives; Y,,,, on the right-hand sides are nonlinear in 2:; and their 
derivatives, determined from earlier approximations. Thus, besides the expressions in 

E i k ,  the (2s) approximations involve only terms linear in 2;; and their derivatives; the 

nonlinear Y,,,, do not appear in the (2s) approximations. These approximations are the 
only ones considered in this paper. In fact, it is in the (22) approximation that there 
first appear terms generally representing secular changes in mass and angular momentum 
of the source at rates precisely equal and opposite to those at which energy and angular 
momentum of electromagnetic waves flow away from the source (0 6). So our object, 
in 0 6, is to find appropriate solutions of the (2s) approximations (s = 0, 1,2). 

In conclusion, we denote the solution of the ( p s )  approximation as the (ps )  solution; 

it is represented by the gi, satisfying equations (3.6). 

( P S )  

(2s) 

(PS) 

( P S I  

4. The Sachs metric 

In order to solve the leading (2s) approximations effectively, especially the (22) one, we 
shall use the metric of Sachs (1962), presented here in the form 

ds2 = - r2(E de2 - 21 sin 0 d0 d 4  + C sin% d4’) + D du2 

+2F  dr du+2Gr de  du + 2Jr sin 0 dCp du (4.1) 

as in Rotenberg (1972a, b). In this, B, C, D, F ,  G, I and J are functions of the coordinates 
(r ,  8, Cp, U), of which the space-like coordinates (r, 8,4) are the (pseudo-) spherical polar 
coordinates of the field point P, and the time-like coordinate U ‘%‘ t - r is the (pseudo-) 
retarded time at P. 

In coordinates of the Sachs metric, flat space-time is represented by 

ds2 = - r2(d02 + sin28 dr#J2) + du2 + 2 dr du (4.2) 

and the external Nordstrom solution takes the form 

ds2 = -r2(d82+sin28d42)+(1 -2mr-’ +47ce2r-2)d~2+2drdu (4.3) 

as shown in Rotenberg (1971). 
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The coefficients of the metric (4.1) have expansions similar to the expansion (3.4), 
given by 

p = 2  s = o  

z I 3 0  ( P S I  

- r - 2  cosec2eg33 = C = 1 + C epas c 
p = 2  s = o  

O U I C  I P S )  

g,, = D = 1+ epas D 
p = 2  s = o  

x x  lP,l 
g , , = F =  1+ 1 C e p d F  

p = 2  s = o  

IPS) x x  

r - ' g2 ,  = G = C epas G 
p = 2  s = o  

(4.4) 

x x  I P S )  

r -  cosec 8gZ3  = I = epas I 
p = 2  s = o  

x x  (PSI 

r - '  cosec6g34 = J = 1 epasJ  
p = 2  s = o  

( P S )  (PSI ( P S )  ( P S )  ( P S )  (PS) 
where B , C ,  . . . , J are functions of ( r ,  8,4, U), and B , C and I are connected by the 
second of equations (4.1). The isolated terms 1 on the extreme right-hand sides of 
equations (4.4) constitute the flat space-time metric (4.2), in which 

(00 )  (00) (001 100) 
g 2 ,  = - r 2  g,, = - r 2  sin28 g44 = 1 g14 = 1. (4.5) 

The notation (4.4) will be adopted in Q 6. 
To obtain the external multipole wave solution (of the linear approximation to the 

second pair of equations (1.1)) for 4, in coordinates of the Sachs metric, we apply the 
coordinate transformation 

x = r sin 8 cos 4 y = r sin 8 sin 4 z = r c o s 8  t = u+r  (4.6) 

def def  to equations (2.8). With = an,,/d8, nu,, = an,/&$, the result is 

(4.7) 
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in which k,, k,,, .Ima are functions of U and a prime denotes differentiation with respect 
to ut .  This solution will be needed in the next section. 

5. The fluxes of energy and angular momentum 

To determine the rates of flux of energy and angular momentum we obtain the values 
for the components Eik of the electromagnetic energy tensor in coordinates of the Sachs 
metric, to the required degree ofapproximation. By inserting equations (4.7) in the fourth 
of equations ( 1 . 1 )  and using the result and equations (3.4) and (4.5) in the second of 
equations (1 .1 )  we find after considerable but straightforward calculation 

( 2 0 )  ( 2 1 )  
in which the: nonzero E ,  and Eik are given by 

( 2 1 )  
r - l  E , ,  = r -Snu ,2ku  

( 2 1 )  
).-1 s - 1  E , ,  = r - 5 ~ - 1 n u , 3 k a  (5.3) 

( 2 1 )  
r - l  E24 = -na,2(r-3k;+r-4kb) 

- 1  
( 2 1 )  

r - l  s - 1  E,, = -s na,3(r-3k;+r-4k&) 
( 2 2 )  

(with sdAf sin e), in which the nonzero (10) x (12) contributions to E ,  are given by$ 
( 2 2 )  ( 2 2 )  ( 2 2 )  ( 2 2 )  

r - 2  E,, = r - 2 s - 2  E,, = E,, = E , ,  

= 33n,n,- 6,,,)( - 2r-,rb, - 6 ~ - ~ 1 , ,  + 3r-'k,,) 
( 2 2 )  

r - l  E , ,  = n , , 2 n , [ r - 5 ( - ~ u p - 2 1 a p ) + 3 r - 6 k , p ]  

(5.4) 

t A sequence of additional transformations in the form 

x 1  = x*' + epas c'(x*) 
I P S )  

(xi = r,  0.4. U ,  p 2 I .  s 2 0) 

usually required to ensure that a metric in coordinates (r ,  9,d, U) satisfies the conditions g,, = gI2  = g I 3  = 0, 
gZZg33-gZg23 = r4 sin% of the Sachs metric, would only introduce higher-magnitude terms in the solution 
(4.7), of order ep+ las (p  2 1, s 2 O), the +t in equations (2.8) being of order e. 
$ The (14) x (Ir) contribution to E,, here means the part of E, ,  coming from the combination F,, x F,, in the 
second of equations (1 .1) .  F,, denoting the coefficient of epas in F,k. 

( 1 s )  (1,) 

I SJ 
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and in which the (1 1) x (1 1) contributions to E ,  are given by 
( 2 2 )  

1207 

( 2 2 )  
E l l  = r-6(k,k,-n,n,k,k,)  

r T 2  E,, = r-4[k,k:+n,n,( - k , k ~ + 2 k k k b ) - 2 n , , 2 n , , 2 k , k ~ ]  
(2.2) 

+ r -  5[3kake)’  + inanp(kekp)’ -na,2np,2(kakp)’I 
+ r-6($k,k,  + $n,npkakp - na,2np,2kakp)  

( 2 2 )  
E , ,  = r - , [ -  k , k ~ + n , n , ( k , k ~ + 2 k ~ k ~ ) + 2 n a , , n , , , k a k ~ ]  

+I- 5 [  - $(k,k,)’ +$nanp(kakp)’ + n,,2np,2(k,k,)’l 
+ r - 7  - i k , k ,  +$n,npkakp+na,2np.2kakp)  

( 2 2 )  
E,, = r-’(kzkz - n,n,k%ki)+ r-3[(kCkk)’-n,n,(kkkb)’] 

+ r - 4 [ ~ k , k , ) ” + n , n p (  - k,ki+ k~kb) ]+r -5 [~(k ,k , ) ’+$n ,n , (k ,k , ) ’ ]  (5 .5)  

+ ~ - ~ ( $ k , k ,  + $n,n,k,k,) 
( 2 2 )  

r - l  E , ,  = 2n , ,2n , ( r -5k ,k~+r -6k ,k , )  

E14 = 2r-4n,n,kikb+ 2r-5rf,np(k,k,)’ + r -6 ( ik ,k ,+  $nanpkakp) 

r -  E24 = - 2 n , n , , , [ ~ - ~ k i k i +  r-,(k,kb)’+ r -  ’k,kb] 

( 2 2 )  

( 2 2 )  

(22)  
r - l  s - 1 E  1 3  = 2 ~ - ’ n , , , n , ( r - ~ k , k ‘ , + r - ~ k , k , )  

- 1  
( 2 2 )  

, .-2 s - ‘ E  2 3  = - - s  (n,,2n,,,+n,,3n,,2)[r-4k,k~+~r-5(k,kp)‘+~r-6k,k,] 
( 2 2 )  

r - l  s - 1 E  ,, = - 2 s -  ‘ n , n , , , [ ~ - ~ k k k i +  ~ - ~ ( k , k b ) ‘ +  r -  ’k,kb]. 

During the derivation of the above formulae and in 5 6, it is helpful at times to consult 
the identities of appendix 5 to avoid excessive calculation. 

As shown in appendix 2, the rates of total outward flow of energy and angular 
momentum from the source are given, in the linear approximation, by 

(5.6) 
r-+ n 

d -(e) = lim r4 ( - E 1 2 s i n # - E 1 3 s ~ ~ ~ ~ # ) d S Z  
dt r -  30 

(5.7) 
d 
-(*) = lim r4 f (e12 cos # - e135c sin 4)  dR 

d -(e) = lim r4 E13s2 dR. 

dt r - n  

5 dt r - m  

Here, the superscript G in I@ indicates that the three components of the angular 
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momentum are measured with respect to Galilean coordinates, and 

if dR J 2 f f  1' f sin 0 de d+. (5.8) 
0 0  

Making use of the above formulae and equations (3.4), (4.5), (5.1) to (5.5) and (2.7) leads 
(in a fairly straightforward manner-see appendix 2) to the following expressions for 
the rates of outward flow of energy and angular momentum from the source : 

(5.9) 
d 
-(E) = e2($na2k:ki + O(a3))  + O(e3) 
dt 

d -(e) = e2($na2c,,,k&k~ + O(a3)) + O(e3) 
dt 

(5.10) 

in which cSBy is the permutation symbol. These are of order e 2 a 2 ;  consequently we 
expect terms to appear in the (22) approximation which indicate that the source itself 
undergoes variations in mass and angular momentum at rates equal and opposite to the 
above rates (5.9) and (5.10) specified by the leading, e2a2, parts. This is confirmed in the 
next section. 

6. The second approximations. Secular changes in mass and angular momentum of the 
source in the (22) approximation 

Each (2s) approximation is given in form by equations (A.26) to (A.35) of appendix 3 

with the quantities P ,  Q, . . . , W on the right specified as 

P = a E l l  Q = E,, R = a r - 2 s - 2  E,, S = a E 4 4  
(2s) (2s) (2s) (2s) (2s)  (2s) (2s) (2s) 
L = a r - l E , ,  M = a E , ,  N = ar- l  E,, U = a r - ' K I E 1 ,  

(2s) (2s) (2s)  

(2s) (2s) (2s) (2s) (2s) (2s) (2s) (2s) 

(6.2) 

The solution of each (2s) approximation can be determined by means of equations (A.36) 
to (A.42) through the technique outlined in appendix 3 immediately after these equations. 

On insertion of the formulae (5.2) to (5.5) one by one in equations (6.1) and on use of 
equations (A.36) to (A.42) as explained in appendix 3, the following approximate solutions 
can eventually be found. 
T h e  (20) (Nordstriim) solution 

def a = -16n. 

T h e  (21) solution 
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The (22) solution corresponding to the (10) x (12) contribution to Ei, 

( 2 2 )  

D = a(3n,np - d a p ) ( i r -  21b, + $ - 3 1 0 p -  $ r - 4 k  U P )  

G = an, ,2n, [ - f r -21~p+r-3(~1 8 u p  + 3 1  8 pa ) - t r w 4  k u p l  

( 2 2 )  

kap) 1 - 4  
( 2 2 )  

I = a s - 1 Z a p ( - ~ r - 3 1 a p - ~ r  

J = as- 1na,3np[  - +r - 21bp + r -  3 ( $ r , p  + @,,) - ir- 4k 

The (22 )  solution corresponding to the (11) x (11) contribution to Eik 

( 2 2 )  

( 2 2 )  ( 2 2 )  

B = - C = a s  U P  [ - ~ r - 1 E , p + $ r - 3 ( k , k p ) ' ]  
( 2 2 )  
D = r { r -  '[ -+Iaa  + (nunp - fd , , ) (kkkb) ' ]  + r -  ' (+nunp- $3,,)kkk; 

+ r e 3 (  - $ n a n p - $ 6 a p ) ( k , k p ) ' - $ r ~ 4 n , n p k , k p }  

F = a [ l r - ' (  16 - nunp + 6,p)k,kp] 

G = ~ ( n , n ~ , ~ [ r -  1 & p + r - 2 ( $ a p +  k ; k J +  r - 3 ( ~ k , k ~ - $ k ~ k p ) - $ r - 4 k , k p ]  

I = a s - ' Z , p [ - ~ r - ' ~ , p + $ r - 3 ( k , k p ) ' ]  

J = a s ~ ' n , n p , 3 [ r ~ 1 ~ u , + r ~ 2 ( ~ H , p + k ~ k ~ ) + r ~ 3 ( ~ k  U P  k' -%'k 8 a p  ) - $ r P 4 k  U P  k 1 .  

( 2 2 )  

( 2 2 )  

( 2 2 )  

( 2 2 )  - 
In the above equations (6.5) and (6.6) the following notations apply 

During the derivation of the solutions (6.4) to (6.6), the identities of appendix 5, involving 
n,, have been helpful. Those could likewise be usefully employed in the verification 
of these solutions in the approximate field equations (A.26) to (A.35). 

The solutions (6.3) to (6.5) were obtained without the use of the five functions (A.43) 
of integration : these functions were put equal to zero. However, towards obtaining the 
solution (6.6) the value 

j (  = a[( - $tanp -@ap)Iap + (2n,np - $d, , ) (k~k~)' l  (6.9) 

had to be assigned to the second function x of integration, while the other four were 
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ignored. Furthermore, the complementary solution 
( 2 2 )  
G = ananp,2($r- 't?k,+- : r -  2 f i u , )  (6.10) 

of the differential equation (A.38), satisfying O"G = 0, had to be used. The omission 
of these crucial steps would result in a solution which, unlike equations (6.6), does not 
satisfy the regularity conditions for all 6, 4, U and all r > 0. 

The linearized gravitational field outside a rigid spherical body of mass m rotating 
with angular momentum is represented by the following Sachs metric, accurate to 
the quadrupole and r -  terms and to be referred to as the Schwarzschild angular momen- 
rum metric : 
ds2 = - r2(de2 + sin26 d4') + (1 - 2mr- ') du2 + 2 dr du 

( 2 2 )  

+2r-2n,n,,2A,,(2r de du)+2rT2s- 'n,,n,,3A,p(2r sin 6 d+ du) (6.1 1) 

(see appendix 4); here A,, is the skew angular momentum tensor (in Galilean coordinates) 
in which e = A 3 1 , A 1 2 ) +  (6.12) 

Thus, in the determination of the secular changes in mass and angular momentum of the 
source, it is sufficient to seek secular changes in r - l  and F 2 ,  respectively, in the (2s)  
solutions over the period of motion of the source. Accordingly, disregarding all periodic 
terms and terms of order r - 3  or higher in the solutions (6.3) to (6.6), we are left with the 
solution (6.6) containing the following integral terms (on account of the second of 
equations (6.8)), which generally represent secular changes in the metric : 

(6.13) 

To obtain secular changes in mass and angular momentum of the source from this 
solution (6.13), we would require, as a temporary measure, that the source be in motion 
for only a given finite interval 0 < U < T ,  say. The purpose of this is to allow the metric 
fields before U = 0 and after U = T to be stationary and a comparison to be made 
between the two metrics. I t  is quite conceivable for the source to be provided with a 
component acting as a mechanism to start and stop the motion of the source rapidly 
but smoothly just before U = 0 and after U = T ,  respectively, as long as the motion does 
not involve any total angular momentum. However, it is desirable for the motion to be 
as general as possible; and to impart angular momentum to the source, which is to be 
in effect during the specified period 0 < u < T only, although generally impracticable, 
is theoretically possible. For example, the mechanism for producing such motion in a 
rigid charged body could be an insulated ringed device similar to that of the rotating 
rod discussed in Rotenberg (1972b). Only the ring would be in motion before U = 0 
and after U = T and the initial and final metrics would still be stationary. We shall 
assume that any prescribed motion in a general isolated cohesive source can be created 
somehow by an appropriate mechanism, without affecting the stationary character of the 
initial and final fields. Towards the end of this section it will be found that this is only a 
temporary arrangement, a thought experiment specially devised to compute mathemat- 
ically the rates of changes in mass and angular momentum of the source ; and concern 
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about how to start and end the motion of the source in the most general way is not 
really necessary. 

Now, for U < 0 (before the motion of the source), the solution (6.13) vanishes; so, 
as expected, there is nothing of order r -  ' and r -  to add to the initial stationary field. 
For U > T (after the motion of the source), the solution becomes 
( 2 2 )  ( 2 2 )  ( 2 2 )  D = -&r- ' j  

1 2  0,  0 ,  3 uu B = - C = - & r - ' S  j 

G = un,n,,,(;r- 1 i u p + 3 r - 2 h u , )  

I = - ~ c i r - l s - l Z u p i u p  J = cis- ' t ~ ~ n , , ~ ( & r -  1 i u p + ~ r - 2 h u , )  

( 2 2 )  

( 2 2 )  ( 2 2 )  

where 

JOr 
JOT 

. d e l  - I,, = IZp(T)  = k:ki du 

d e l  - 
h,, = H z p (  T )  = (k;ki - k i k b )  du 

by virtue of the first and third of equations (6.8). The coordinate transformation 

r = r* +e2a2 ci (e*, 4*) 
( 2 2 )  ( 2 2 )  

ci (e ,  4) = h a (  - 3nunp + S,,)i,, 

(6.14) 

(6.15) 

( 2 2 )  (221 
U = u*+e2a2 6 (e*,4*) 
reduces the solution (6.14) to the form 

D = -Lcir- ' j  3 uu G = $cir-2nunp,2hop J = ;ar-2s-  ' n b n p , 3 h u p  (6.17) 

with the asterisks omitted, while the lower ( p s )  solutions are unaffected and the conditions 
of the Sachs metric remain satisfied. This solution (6.17) can be combined with the 
Schwarzschild angular momentum metric (6.1 1) to  form the following metric of the same 
type representing the final stationary field : 

ds2 = - ?(de2 + sin28 d$2) + [ 1 - 2(m + Am)r- '3  du2 + 2 dr du 

+2r -2nun , ,2 (Au ,+AAu, ) (2r  dB du) 

+ 2 r - 2 s -  'n,n, , , (A, ,+6A, , ) (2r  sin 0 d 4  du) 

b @,4) = ha(n,n, - 6,,)iU, 

(221 ( 2 2 )  ( 2 2 )  

(6.18) 

with 

Am = &ae2a2iuu = -qne2a2 JOT k%k% du 

AAup = &e2a2hu, = -$ne2a2 loT ( k b k i  - k%kb) du 
(6.19) 

by virtue of the notations (6 .2)  and (6.15). These quantities clearly show up as corrections 
to the mass m and the angular momentum A,, of the source. So, during the period 
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0 < U < T of its motion the source undergoes changes in mass and angular momentum 
in the (22) approximation by the amounts 

m(T) - m(0) = - $ne2a2 

q ( T )  - @(o) = - $re2u2czup JOr kkk; du + p l  

k:ki du + p F 
(6.20) 

in the notation (6.12). Here we have included the contributions p and p 2  to these changes 
due to the rapid but smooth transitions for the source from rest to motion and vice 
versa, only to  show in the next paragraph that p and p l  can be made arbitrarily small by 
reducing the transitory periods sufficiently. 

I t  would have been more accurate to add the short transitory periods to the period 
of the prescribed motion of the source and to take the augmented period as the range 
for the definite integrals on the right of equations (6.20). To  compensate for this we have 
included the correction terms p and p z  on the right of equations (6.20), which are the 
contributions of these definite integrals over the period T representing the transitory 
intervals combined, and which may be written as 

p = - -ne2a2 kik: du p = --ne2a2, 3 zap [ kkk; du. (6.21) 

By improving the effectiveness of the stop-and-go mechanism sufficiently, we can reduce 
the combined transitory period sufficiently so as to render the quantities p and p2 in 
equations (6.21) so small as to justify these as before. 

Suppose we allowed the motion of the source to proceed a little longer, over a period 
AT. Then we could calculate the derivatives dm(T)/dT and d@(T)/dT by subtracting 
the above effects (6.20) over the original period T from the corresponding effects over 
the extended period T+AT, divide by AT and let AT tend to zero. Disregarding p 
and p z  in the process, as justified by the foregoing argument, we would find 

3 i 

This is true for any assigned value for T ; so replacing T by U we have 

d 8 d G  8 
du 3 du 3 

-M,(u) = --ne2a2cxUpkbk; -m(u) = --ne2a2k”k” 
U 0  (6.23) 

in which the argument of k,  is U. Hence we may conclude that, even if the motion of the 
source is allowed to carry on indefinitely without any attached device to start and stop 
its motion, the source will suffer secular changes in mass and angular momentum in the 
(22) approximation at the rates specified by the formulae (6.23). The requirement that 
the source be in motion for a finite period has now been relaxed, and equipping the 
source with a stop-and-go device may now be considered as a thought experiment. 

As expected, the above effects (6.23) account for the (22) contributions to  the rates 
(5.9) and (5.10) of radiation energy and angular momentum flow from the source. 
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Appendix 1. The linearized retarded solution for the electromagnetic potential 

We derive here the exterior multipole wave solution (2.8) of the linearized form of 
equations (2.1). 

In Galilean coordinates ( x , ,  t ) ,  the potential 4i for outgoing waves in weak fields 
may be written in the Kirchhoff form 

(Eddington 1924, $74, Rotenberg 1966), in which the integral covers any fixed space 
volume I/ containing the source of the field, and r* is the distance of the point P(Z,), 
associated with the space element do = dZl dZ2 dZ3 of integration, from the field point 
P(x,)  of interest. Carrying out the Taylor expansion about (Z,, t - r )  for the integrand in 
the first of equations (A. l )  we obtain 

with 

(A.3) 
del g = r * - r  

and the superscript symbol ( n )  denoting ?/atn. Utilizing the binomial theorem in ex- 
panding f i r *  ( n  = 0, 1,2, .  . .) in ascending powers of Fir corresponding to the range 
r > 7 = OP = (ZuZu)1'2,  we find 

- 
1 

r* 
_ -  

_ -  - g2 
r* 

where e* is the angle POP and P, are the Legendre polynomials. Substituting the ex- 
pansions (A.4) into the expansion (A.2), employing the formulae 

i2 = ZuZu cosO* = nul, /?  (nu = xu/r)7 ('4.5) 
inserting the result in the first of equations (A.1) and adopting the notations (2 .3 ) ,  (2 .5 )  
and (2.6), we arrive at the following exterior multipole wave solution for 4i : 
4, = e[ar-1h,+a2n, (r - ' I~ ,+r-21 , , )+O(a3)]  

44 = e { r - ' + a n , ( r - ' k b + r - 2 k , )  (A.6) 

+ a 2 [ ) r -  n,n,k:, + 33n ,n ,  - d, , ) (r-  k:, + r - 'k, ,)]  + O(a3)} ; 

h,, k , ,  k,, and l,, are functions o f t  - r and a prime indicates differentiation with respect 
to this argument. 

To convert the solution (A.6) to the form (2.8), it is necessary to obtain certain relations 
among the leading hi:apr,,. (see relations (A.9) and (A.11) below). This is done by applying 
a standard treatment on the electromagnetic conservation equation (2 .4) ,  here written 
as 

J 4 , 4  = J Z J  (A.7) 
similar to the one applied to the gravitational conservation equations qab7;a,b = 0. 
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Multiplying equation (A.7) by x ,  and integrating over any fixed space volume V 
containing the source we have 

By virtue of Gauss's theorem and the fact that Ji = 0 on the boundary S of V,  the first 
integral on the extreme right of equation (A.8) vanishes, and so 

d 
dt 1" jv J ,  dv = -- x,J4 du 

which in the notations (2.3), (2.5) and (2.6) gives 

h, = -ki. ('4.9) 
Similarly, multiplying equation (A.7) by x B x ,  and integrating over V we obtain 

On account of Gauss's theorem, the first integral on the extreme right of equation (A. 10) 
vanishes, and so 

Jv x0x ,J4  dv = - (x.,J, + x p J y )  du J" 
which in the notations (2.3), (2.5) and (2.6) yields 

k' 1, = - 1  118 - 1  p a '  (A . l l )  

The relations (A.9) and (A.11) immediately transform the multipole wave solution 
(A.6) into the required form (2.8). 

Appendix 2. Integral formulae for the energy and angular momentum fluxes 

To establish the expressions (5.6) and (5.7) for the rates of outward flow of energy and 
angular momentum in the linear approximation, we start with the well known formulae 

dE 
- = lim JS E4%, dS 

M ,  = - e z B y  lim jv x,Ey4 du 

dt r - z  

r - x  

(A.12) 

(A.13) 

in Galilean coordinates x i ,  where S is a large sphere, with centre 0 and radius r ,  en- 
closing volume V and e,,; is the permutation symbol. 

Let us first consider the formula (A.13) to deduce equations (5.7). Differentiating 
it with respect to t we have 

d 
-04,) = - clBY lim jv X , E I ~ , ~  du = enpy lim 1" x,Ey6, ,  dl; dt r- oc r -  oc 

(A.14) 
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in the linear approximation, since in this approximation 

Elk,, = 0 3 = -EY4,4 (A.15) 

where no 4-current J i  is present. Hence, in the linear approximation, equation (A.14) 
gives 

since clpyEPY = 0 ( E p y  being symmetric and capy being skew). By Gauss's theorem this 
yields 

(A.17) d 
- (Ma)  = lim Is xpEy6n ,  dS = capy lim r3  5 npn,Eyd dR 
dt r -  z r -  = 

from the definitions (2.7) and (5.8). On transformation from Galilean coordinates 
x i  = ( x ,  y, z ,  t )  to the Sachs coordinates 2, = ( r ,  8,4, U), equation (A.17) becomes 

d ax. ax ,  
capy ,-- * ax, ax, z(Mz) = lim r3  npn,EuP --dQ 

which, by virtue of the fact that 

gives 

(A.18) 

(A.19) 

Use of equations (2.7) and (4.6) in equation (A.19) leads eventually to equations (5.7). 
To deduce equation (5.6), we use in equation (A.12) the transformation law from 

Galilean to the Sachs coordinates as above, the result (A.18) and equations (4.6). 
The bars referring to the Sachs coordinates are no longer required in equations (5.6) 

and (5.7) as symbols of distinction. 
We conclude by explaining the techniques with which the calculations of the ex- 

pressions (5.9) and (5.10) from the formulae (5.6) and (5.7), via the values for E,,  specified 
by equations (5.1) to (5.5), may be significantly reduced. The most complicated com- 

putation results from calculating d@/dt ; so we confine attention to the evaluation 

of the component d e / d t  to illustrate the reduction in calculation. 
From the first of equations (5.7) and equations (3.4), (4.9, (5.4) and (5.5) we find 

( 2 2 )  

( 2 2 )  

(A.20) 
d (22)  -(e) = (I;,-Zkkk;l) 
dt 
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where 

def p a  = n;1,2 sin 4 + ne ,3  cos 8 cos 4. 

It is readily seen from equation (2.7) that 

so  

I I d ( 2 2 )  

- ( M y )  = (/io - 2kkk;) dt 
non3 dR + ( -  /I;, + 2kkkl;) non2 dR 

which from the easily shown result that 

n,np dQ = $7~6,~ s 
yields 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

( 2 2 )  
Since we are interested solely in the secular change in M y  we may ignore the term 
I;, in the parentheses on the right of equation (A.24), since this term only has a periodic 

effect on f l ,  and write 
( 2 2 )  

(A.25) 

in agreement with equation (5.10). 

Appendix 3. The approximate field equations for the Sack metric and their solution 

Inserting the expansions (4.4) and (3.5) in the first of equations (1.1) we obtain the (ps) 
approximation, in coordinates of the Sachs metric (4. l), as the ten equations below 
(in which RIk 2' R , ,  + BxE,). To save printing, the symbols (ps), which ought to have 
been placed above the capital letters, have been omitted throughout this appendix, 
except where confusion may result without them. 

2r-2R;2 = 0: B, ,  -2B14+2r- '(B, -B4+D,  - F ,  - G 1 2 )  

+ r -2(  - B,, + B,, cosec2€J- 3B2 cot 8 + 2 B + 2 D +  2F22 -4F-4G2 (A.27) 

-2Gcot8+21,,cosec€J+21,cosec8cot 8-2J3cosec8) = Q 
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2r- cosec29R;, = 0 : 
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- B ,  , + 2B,, + 2r- l (  - B ,  + B,  + D ,  - F ,  - G ,  cot 8 - .Il3 coset e)  
+ r - 2 (  - B,, + B,, cosec28- 3 8 ,  cot 0 +2B+ 2 0  

+ 2F,, cosec28 + 2F, cot U - 4F - 2G, - 4G cot 9 

+ 2l,, cosec 0 + 21, cosec 9 cot 8 - 45, cosec 0) = R (A.28) 

2Rk, = 0 :  - D , , + 2 F , , + 2 r - ' ( - D , - D , + 2 F , + G 2 4 + G 4 ~ ~ t  e+J,,cosecO) 

- r-,(D,,  + D,, cosec29 + D, cot 0) = S (A.29) 

2r- 'R; , = 0 : - G , , + r -  I (  - B ,  , - 2B, cot 8 + F, , - 2G , + I, , cosec 0) 

+2r- '(-F2+G) = L (A.30) 

2R;, = 0: - D , , + 2 F , 4 + r - ' ( - 2 D , + G , 2 + G l  cot8+.Il ,cosec8) 

+ r - ' (  - F,, - F,, cosec'0 - F, cot 8 

+G2+Gcot0+.I ,cosec6)  = M (A.31) 

2r-'R;, = 0:-G,,+G,, 

+ r -  I (  - BZ4 -2B, cot 8- D , ,  + F, ,  + F2,- 2G, - G, + I,, cosec 0) 

+r- ' ( -G, ,  cosecZO+.I,,cosec8+.I,cosecOcot e)  = N (A.32) 

2r- '  cosec 9 R;, = 0 :  

-.I, , + r -  I (B,  , cosec 0 + F ,  , cosec 0 + I,, + 21 , cot 6 - 2.1 ,) 

+2r-2(-F3cosece+J)  = U (A.33) 

2r- cosec 0 R; , = 0 : 

-11,+21,,+r-'(-G,,cosec8-21,+21,-.I ,2+.I,  cote)  

+r-2(2F,,cosec8-2F, cosececot e 
-G3cosec0-J ,+Jcot8)  = V (A.34) 
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2r- cosec OR;, = 0 : 

- J,  , + J,, + r -  ' (B3, cosec 8 - D ,  , cosec 6 + F ,  cosec 8 

+F3,cosec8+I2,+21,cot 8-25, -5,) 

+ r-'(G,, cosec 8 - G, cosec 8 cot 8 

-J, ,-J ,cot6+Jcosec26) = W. (A.35) 

Here, a subscript 1, 2, 3 or 4 after B, D, F ,  G, I or J denotes differentiation with respect 
to r, 8, 4 or U respectively-a notation to apply to any non-tensorial symbol, unless 
implied otherwise in the context. The second of equations (4.1) has been made use of; 

thus C does not appear in the above equations. The terms linear in gik and their de- 
rivatives appear explicitly on the left of these equations, while the terms nonlinear in 
( q r )  (PSI 

g,, and their derivatives, known from earlier approximations, accompany Eik to form 
the quantities P ,  . . . , W on the right. 

It can be shown that the following six equations can be derived from the first seven 
equations of the above ( p s )  approximation; a proof is to appear in a later work : 

IPS) 

F = -- rPdr+q(O,$,u) (A.36) 4 ' S  
der 0'0 = D ,  , - 2DI4 + 2r- ' ( D ,  + D,)+ r - , ( D 2 ,  + D ,  cot 8+ D,,  cosec28) 

= -S+2(F, +2r - 'F f r - 'X) ,  (A.37) 

der  
O"G = ~ ( G ~ I , - ~ G , I ~ ) + ( ~ G I , - ~ G I ~ )  

+ r - ' [ G , , ,  + 3GI2 cot 8+  G,(cot2U - 1)+ GI, ,  cosec28+ 2G,] 

+r-2[-G,,-3G,cot O+G(1 -cot28)-G,, cosec28] 

= rL4-(rN),+2DI1 cot 8+F1,2+2r-1F24+[r-2(X2+2Xcot  8)11 (A.38) 

( r D , - G , + r - ' X ) d ~ - c o s 8  Gd4+T(r ,e ,u)  (A.39) s 
O " ' B ~ ~ B , , - ~ B ~ ~ + ~ ~ - ~ ( B , - B ~ )  

= 8Q- R ) -  M - D ,  , + 2FI4 + 2r- '( - D ,  + G I , ) +  2r-,( - F 2 ,  + G,) (A.40) 

+ 2 COS 8 13 d 4  + fi(8,4, U )  + v(r,  8, U )  S 
where 

X = [r2(M-2F14)+(F22+F2 cot 8 + F 3 3  cosec28)] dr+x(8, 4, U )  j 

(A.41) 

(A.42) 
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and 

are five functions of integration. This set of equations will be considered as the formal 
solution of the @s) approximation. For F is known at once from equation (A.36), so 
that the right-hand side of equation (A.37) is readily computed. The differential equation 
(A.37) can be solved for D by using, as a trial solution, an expansion in ascending powers 
of r - ' .  Subsequently the differential equation (A.38) can be solved for G by a similar 
process, as the terms on the right of this equation are now known. The results so far 
allow J to be calculated immediately from equation (A.39), and the differential equation 
(A.40) to be solved for B by use of a trial solution similar to that for D or G. This in 
turn enables I to be evaluated at once from equation (A.41). 

During the foregoing process of solution, values for the five arbitrary functions 
(A.43) of integration and complementary solutions of the differential equations (A.37), 
(A.38) and (A.40) must be chosen with extreme caution so that the ( p s )  solution involving 
them satisfies all the ten ( p s )  field equations (A.26) to (A.39, including the last three, and 
is regular for all 6, 4 and U and for all r > 0. It is desirable that the @s) solution also 
satisfies the Galilean conditions at spatial infinity. However, no additional complemen- 
tary functions are to be used towards obtaining the @s) solution, since these constitute 
gravitational source functions of the linear approximation to R ,  = 0, which, from what 
was stated in 0 3, are not our concern here. 

Appendix 4. The Schwarzschild angular momentum field 

We outline here the derivation of the metric (6.11), to the accuracy indicated, for a 
rigid spherical body of mass m rotating with angular momentum A,, . 

In Rotenberg (1972a) it is shown that the linearized form of the metric of Sachs 
type representing the external field of any isolated coherent gravitational source has a 
quadrupole wave-immediately following the Schwarzschild part 

- r2(d6' + sin26 d@) + (1 - 2mr- I )  du2 + 2 dr du (A.44) 

-of the form 

(nu,znp.z  - ~ - ~ n , , ~ n , , ~ ) ( r -  ' M i , +  r - 3 M , , ) (  - rz  de2 + rz  sinz6 d@2) 

+(-3n,n,+~,,)(2r-'M~p+2r-2M~p+~-3Mup) du2 

+ n,nP,,[2r- ' M : ,  + 2 r - 2 (  - 2Mk, + A,,)-  3 r -  3M,,](2r  dO du) 

- 2 ~ ~ - ' n , , , n , , 3 ( r - ' M ~ p + r - 3 M , p ) ( Z r 2  sin tldOd$) 

+ s- 'nun, , , [2r-  'M:, + 2r -  '( - 2 M i ,  + A,,)  - 3r-  3 M  0, ] 

x (2r  sin 0 d d  du). (A.45) 

In this, M , ,  are the second mass moments, at retarded time U, of the source about the 
Cartesian coordinate planes x, = 0. For a rigid sphere the time derivatives of M,,  
vanish and the combination of the Schwarzschild and quadrupole metrics (A.44) and 
(A.45) reduces at once to the metric (6.1 l ) ,  in which terms of order r -  have been ignored. 
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Appendix 5. Some useful identities 

The following identities, involving n,, and perhaps a few others deducible from these, are 
found useful in $9 5 and 6, especially in the derivation and verification of the solutions 
(6.4) to (6.6). Not all the identities are independent of each other ; some may be derived 
from others, but all of these can be directly checked via equation (2.7). 

na,22 + nu,2 cot 8+ nu,33 cosec28 = - 2n, 

n u . 2 2  = - U 1  n a , 2 3  = n1,3 cot 8 E --,cot = 0 

n,,2 cot O+n,+n,,,, c m c 2 8  = 0 

( ~ J I , , ~ ) , ~  + nznp,2 cot 8+ ( ~ J I , , ~ ) , ~  cosec28 = 6,, - 3nunp 

( n ~ 7 , ) , 2 ~  + (nunp) , ,  cot 8 + (n,nS),33 cosec28 = 2(6,, - 3nun,) 

n a , 2 n p - n u n p , 2  = - ( n a , 2 n p , 3  - n u , 3 n f i , 2 ) , 3  cosec20 

= - (n,, 3np  - nunp3 3), cosec 8 sec 6 

(nzn,h.2 + 2(n, ,2nD,2  - n,,3n11.3 cosec2t)) cot 0 +(ilz,2nP.3 + n,,3n8,2),3 cosec28 = o 
(da,  - 2nunp - n,,2np,2) - nln,,2 cot 8 - ( n , r ~ , , ~ ) , ~  cosec28 = o 
nu,2na,2 + ( n 1 . 3 n p . 3 )  cosec2e = hap - nunp 

S,,  = a,,- n,np - 2nz,2np,2 = - n,,2np,2 + nu,3np,3  cosec'6 
de l  - 

def  
'U, = n ~ , 2 n p , 3 + n 1 . 3 n f l , 2  = ( n u n p ) , 2 3 - ( n 2 n / J ) , 3  cot 

S U , J  = (n1np).2 

z u p . 2  + z,, cot 8+ sup., = - 2(nun,),3 

Sup,, + 2S1, cot 8 - Z, , , ,  cosec28 = 2(nUn,),, 

S l l , . 2 2  + ~ S , , , Z  cot o-2S,l , -S, , j ,33 cosec20-2Zz8.23 cosec'6, = 4(6,,,-3nzn8). 

u*(Y(B, +))E ;122+3j)2 cot 0+(y3,+;1)cosec28 

If 

then 

Cl*(nunp,2) = 2[ +(az, - 3n,n,) cot e] .  
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